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We demonstrate the approximate nature of the Onsager-Casimir relations for 
the example of the linearized Burnett equations for a dilute gas. For any dis- 
cussion of Onsager relations the choice of a correct set of thermodynamic forces 
and fluxes is of course crucial. By retracing the Chapman-Enskog procedure, we 
show that the usual expressions for the thermodynamic forces require 
modifications at the Burnett level. However, inclusion of these terms does not 
remedy the violation of Onsager symmetry first noticed by McLennan. A 
modified version of the Onsager symmetry that involves thermodynamic forces 
derived from an entropy Lagrangian rather than from the entropy itself does 
remain valid on the Burnett level. Throughout, we allow for the presence of an 
external potential; the Burnett equations including potential terms are derived 
in an appendix for a set of variables particularly suited for our discussion. 
We stress that in discussing Onsager relations one should use the full 
thermodynamic fluxes rather than their dissipative parts only, in spite of the fact 
that only the latter contribute to the entropy production. 

KEY WORDS: Onsager-Casimir relations; adiabatic elimination; Chapman- 
Enskog method; Boltzmann equation; Burnett equations; thermodynamic forces. 

1. I N T R O D U C T I O N  A N D  SURVEY 

The Onsage r -Cas imi r  reciprocity relations, (1-4) which are of fundamenta l  
impor tance  in l inear  irreversible thermodynamics ,  are only approximate ly  

valid. This fact has been known  for some time, bu t  not  much a t ten t ion  has 

been paid to it, p robab ly  since the deviat ions from Onsager  symmetry are 
seldom of much practical significance. We feel that  these deviat ions 
nevertheless deserve some at tent ion,  if only because of the central  role 
played by the Onsager  relations in the theoretical framework of statistical 
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physics. The violations appear naturally in the course of a systematic 
analysis of the relation between the various levels of description 
(microscopic, mesoscopie, and macroscopic) that are appropriate for 
phenomena occurring in a given system on different time scales. Such an 
analysis also points the way toward a redefinition of the thermodynamic 
forces that restores full Onsager-Casimir symmetry. 

The first indication of a violation of Onsager symmetry appeared in a 
paper by McLennan, C5) who showed by inspection that Onsager symmetry 
is violated by the Burnett corrections to the Navier-Stokes equations. As 
we shall see, McLennan's case against the Onsager relations is not air-tight, 
since his expression for the thermodynamic forces neglects corrections to 
the entropy density of the same order as the Burnett corrections them- 
selves. However, his conclusions remain valid when the appropriate correc- 
tion terms are included. Moreover, McLennan correctly identified the 
fundamental cause of the symmetry violations, the "initial slip ''(6'9'1~ that 
occurs when one connects the solutions of the hydrodynamic equations, 
which are valid only after some "aging" period, to the actual initial values 
of the associated microscopic expressions. 

Geigenmfiller et  al. ~7) showed that violations of Onsager-Casimir sym- 
metry occur quite generally when one carries out a systematic adiabatic 
elimination of fast variables from a system of relaxation equations that 
itself obeys the symmetry. The effect is again related to initial slip effects. In 
Ref. 7 it is also shown how the symmetry can be salvaged by a redefinition 
of the thermodynamic forces. The treatment of Ref. 7 is restricted to finite 
systems of relaxation equations. It was extended to continuous systems in a 
previous paper, (8) further designated by I, to which we refer for a somewhat 
fuller discussion. The formalism developed in I was applied there to the 
corrected Smoluchowski equation for the diffusion of Brownian particles in 
configuration space in the presence of an external potential. This equation 
can be derived from the Klein-Krarriers equation for the diffusion of the 
Brownian particles in phase space by means of an adiabatic elimination of 
the velocity variable via the Chapman-Enskog procedure. (9'~~ In the 
present paper we apply the formalism of Ref. 7 to the linearized Burnett 
equations, which can similarly be derived from the lineari'zed Boltzmann 
equation. 

Deviations from Onsager symmetry occur only when higher order 
corrections in the time scale ratio are included in an adiabatic elimination 
scheme. Hence, the linearized Boltzmann equation, which involves no such 
corrections, is expected to exhibit full Onsager symmetry when the usual 
conditions for its validity are satisfied. First of all, the microscopic 
equations should be time-reversal-invariant. This implies the absence of 
external magnetic fields or Coriolis forces, and it manifests itself in a 
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detailed balance property of the collision operator. Second, the stationary 
state around which one linearizes should itself be time-reversal-invariant 
(no macroscopic flow). In Section 2 we show how these conditions lead to 
the Onsager symmetry of the evolution equations for the expansion coef- 
ficients of the one-particle phase space distribution function with respect to 
a suitably chosen system of orthogonal functions of the velocity. It is 
important that the thermodynamic fluxes occurring in these mesoscopic 
Onsager relations are derived from the full evolution equations; they 
therefore contain both dissipative and nondissipative contributions. Our 
mesoscopic Onsager relations are closely related to, but not identical 
with, the Onsager relations recently proposed by Kug~er m) for the 
hydrodynamic regime. 

In Section 3 we consider the hydrodynamic equations, evaluated up to 
Burnett order. These can be derived from the Boltzmann equation using 
the Chapman-Enskog algorithm. We show the violation of Onsager sym- 
metry already noticed by McLennan(5); our treatment includes the effects 
of an external potential and a refined definition of the thermodynamic 
forces. The Chapman-Enskog solution is discussed more fully in the 
Appendix. Our treatment there largely follows the review by Dorfman and 
van Beijeren, (12) but it includes the effects of an external potential and the 
Chapman-Enskog expansion of the entropy functional, which is needed to 
obtain the correct expression for the thermodynamic forces. 

In Section 4 we show how full Onsager-Casimir symmetry can be 
restored by modifying the definition of the thermodynamic forces. The 
modified forces are the functional derivatives with respect to the 
hydrodynamic fields of the "entropy Lagrangian," i.e., the difference 
between the contributions to the entropy from the odd and those from the 
even part of the phase distribution function. We also comment on the use 
of these modified Onsager relations for establishing an upper bound for the 
number of propagating modes in a homogeneous system. These so called 
Lekkerkerker-Laidlaw relations (13'14) were already discussed in the present 
context in Ref. 5; they are closely related to generalized orthogonality 
relations for the eigenfunctions of the hydrodynamic evolution operator, 
noticed by Felderhof and Titulaer (~5) and more fully discussed in the 
present context in I. 

The final section contains some concluding remarks and some further 
comments on the relation of our treatment to that in Refs. 11 and 5. We 
briefly comment on the use that can be made of the modified Onsager 
relations for restricting phenomenologically derived equations of motion, 
and on the complications caused by kinetic boundary layers. 

822/50/5-6-5 
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2. T H E  M E S O S C O P I C  O N S A G E R - C A S I M I R  R E L A T I O N S  

The system considered in this paper is a dilute gas of structureless 
particles with mass m in a potential ~b(r). The gas should not be too far 
away from an equilibrium state described by the distribution function 

P~q(V, r)=~o(V)ncq(r) (2.1) 

where ~b0(v ) is the normalized Maxwell distribution at a temperature 
To = (kfl) -1 and ncq(r) is given by 

neq(r) = No exp[ - fiqS(r)] (2.2) 

with No a normalization constant determined by the total number of 
particles. We shall assume that the one-particle distribution function 
P(v, r, t) of the gas obeys the linearized Boltzmann equation 

~?t P(v, r, t) = (5 P + G) P(v, r, t) 

= -V.~r+m--~-r .~v P + ~ P  (2.3) 

where G is the linearized collision operator; it has the form neq(r ) Go, 
where G0 acts only on v. Equation (2.3) is a good approximation when P 
is sufficiently close to Peq, and when both P and q~ are sufficiently smooth 
(in r on the scale of a mean free path). When the microscopic equations 
governing the collisions are invariant under time reversal, G obeys the 
detailed balance condition, which is equivalent to Hermiticity with respect 
to the scalar product 

<f, g ) ~ =  dvf(v)  g(v)~bo'(V ) (2.4) 

Moreover, it preserves the tensorial character of any function of v, and in 
particular the parity with respect to time reversal (i.e., a change in the sign 
of v). The streaming operator 5 p in (2.3) reverses the parity and is anti- 
Hermitian with respect to 

< P, Q >r,v= f dv far P(v, r) Q(v, r) p~ql(v, r) (2.5) 

In order to discuss the Onsager symmetry properties of (2.3), we first 
have to choose a set of basic (in our case mesoscopic) variables with well- 
defined parity. The information contained in these variables should be 
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equivalent to that contained in P(v, r, t). Once the basic variables are 
chosen, the thermodynamic fluxes and forces are also fixed(3); they are the 
time derivatives of the variables and the functional derivatives of the 
entropy functional with respect to these variables, respectively. We choose 
as our variables the expansion coefficients ck(r, t) defined by 

P(v, r, t) = Peq (u  r) + ~ G(r, t) ~bi(v) (2.6) 
i=o 

where the ~bk(v) are a set of functions of definite parity that are complete 
and orthogonal with respect to (2.4): 

(~bi, ~bj)~ = .~6 o (2.7) 

The first of these functions should be the Maxwellian ~b0(v) and it is 
convenient to take the next four to be eigenfunctions of ~ with eigenvalue 
zero; for later convenience we choose 

)3 ~1,2,3(u (2.8) 
z # /  

If one inserts the expansion (2.6) into the entropy functional 

S[P(u F,/)] = - k  f dr f dv P(u r, t) ln[P(u r, /)/Peq(u r)] (2.9) 

one obtains, up to terms quadratic in the c~, 

s~e l [P]  = k Z f dr neql(r)[ci(r, t)] 2 (2.10) 

provided the integral over co(r, t) vanishes (which means that P and Peq 
contain the same number of particles). Hence the thermodynamic forces 
are given by 

f/(r, t ) -  6S~23[P] = k~in~ql(r)ci(r ,  t) (2.11) 
~c,(r, t) 

A decomposition of (2.3) with respect to the ~bi(v) leads to a system of 
coupled evolution equations of the form 

ci(r, t) = ~ Jg0.cj(r, t) (2.12) 
J 
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where the ~//~j are operators with respect to r, due to the contributions 
originating in ;7. Using (2.11), this is easily brought into the canonical 
Onsager form 

a 
at c,(r, t) = ~ ~jfj(r ,  t) (2.13) 

J 

In complete analogy with I, one derives from the Hermiticity properties of 
and 5 p the Onsager-Casimir relations 

~ j  = thqy C2~ (2.14) 

where the dagger denotes Hermitian conjugation and the t/~ are the parities 
of the functions ~b~(v). An alternative form, already introduced in I, is 
obtained by writing instead of (2.13) 

8 
at c,(r, t )=  ~ ~jneq(r)fj(r, t) (2.15) 

J 

The ~ j  then obey the relations 

~c~o = ~l PT s ~f  f (2.16) 

where the superscript + denotes Hermitian conjugation with respect to the 
scalar product 

<f, g) r  = f dr n~ql(r) f ( r )  g(r) (2.17) 

It may be worth emphasizing that the thermodynamic fluxes, which 
can be written as 

8 Ji(r, t)-~-~lci(r, t ) =  0~t(q~i, (Sg + ~ ) P ( v ,  r, t)>~ (2.18) 

can be decomposed naturally into a conservative part J7 containing 
the contributions from 5 e, and a dissipative part J~ containing the 
contributions from ~. Only the latter part contributes to the entropy 
production, which for the linearized Boltzmann equation is given by (4) 

(r[P] = - k  I dr I dv NP(v, r, t) in[P(v, r, t ) / P e q ( u  , r)] (2.19) 

An expansion in terms of the ~bi in which only terms up to second in the 
ci(r, t) are retained gives 
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a[2] I-P] = k ~ ~i f dr J/a(r, t)  ci(r , t)  n~ql(r) 
i 

-- ~ ; dr J~a(r, t) f~(r, t) (2.20) 
i 

where due to the choice (2.8) only terms with i > 4 contribute. From (2.18) 
and (2.11) one finds the relation 

J{(r, t) = ~ ~/- i (~b i, ~bj )~  c~-ln~q(r)fj(r, t) 
J 

(2.21) 

In view of the Hermiticity of ~ with respect to (2.4), the matrix connecting 
the j a  with the f j  is clearly symmetric. Since ~,  moreover, connects only ~bi 
and ~bj with the same parity, this symmetry property is formally analogous 
to Onsager symmetry. It is highly misleading, however, to call it Onsager 
symmetry, as is clearly seen when one considers the influence of a magnetic 
field or of Coriolis forces. These add terms to 5 e that destroy its anti- 
Hermiticity, and hence the validity of the Onsager relations (2.14) or 
(2.16). However, N is in general not affected (certainly not for hard 
spheres), so the matrix in (2.21) will in general stay symmetric. We return 
to this question in Section 5 in connection with a discussion of the work in 
Ref. 11. 

3. S Y M M E T R Y  V I O L A T I O N  FOR THE B U R N E T T  E Q U A T I O N S  

After an aging period of the order of a few mean free times, any 
sufficiently smooth solution of the linearized Boltzmann equation 
approaches a normal or Chapman-Enskog-type solution. In this so-called 
hydrodynamic stage the ci(r, t) with i > 4  are linear functionals of the 
G(r, t) with i ~< 4. The latter are called hydrodynamic fields; they will be 
denoted collectively by c(r, t ) .  2 Moreover, the c(r, t) obey a closed set of 
linear evolution equations of the type 

8 
~3t c(r, t )=  M .c(r, t) (3.1) 

With the choice (2.8) for the relevant ~bi(v ) the field co(r, t) is the excess 
particle density, the vector field e(r, t) with components Cl.2.3(r, t) is the 
current density, and the field c4(r, t) is the excess kinetic energy density. 

2 In the remainder of this paper we use boldface and boldface sans serif type for three-dimen- 
sional vectors and tensors; five-dimensional vectors and tensors will be denoted by lowercase 
and capital lightface sans serif type, respectively. 
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The connection with the usual hydrodynamic fields fin, u, and fiT is given 
by 

co(r, t) = fin(r, t) = n(r, t) - neq(r ) 

e(r, t) = n(r, t) u(r, t) (3.2) 

c4(r, t ) =  3kn(r, t) fiT(r, t )=3kn(r,  t)[T(r, t ) -  To] 

We shall not make this change of variables, since the c(r, t) have a 
particularly simple relation to the associated thermodynamic forces, which 
greatly simplifies a discussion of Onsager symmetry. 

The Chapman-Enskog algorithm/12'16'17) is a perturbation scheme that 
treats the streaming operator 5e as a small perturbation of N in (2.3). For 
clarity we introduce a formal expansion parameter/~ and write (2.3) in the 
form 

0 
Ot P(v, r, t) = (/~ 1~ + 5p)p(v, r, t) (3.3) 

(the parameter # should be put equal to unity in the final results). The 
normal solutions we are interested in have the form 

4 

PrCZa(v, r, t) = Peq(V, r) + ~ ci(r,/)~bi(v ) + h(v, r, t) (3.4) 
i = 0  

where 

h(v, r, t )=  ~ #kh(k)(v, r, t) (3.5) 
k = l  

is a linear combination of the ~bi(v ) with i>  4 with coefficients that are 
linear functionals of the c(r, t) in (3.4). Substitution of (3.4) into (3.3) and 
scalar multiplication with the first five moments ~bi(v) yields the moment 
equations 

0 
0t  co(r, t) = - 0 "  e 

0 c ( r , t ) =  + D c o - 3 - - ~ d c 4  l 0  P (3.6) 
0t rn 

0c4(r,t)= 1 Ot -~D'c-O'q 
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where we used the abbreviations 

d = 8/0r; D = d + fl 8q)/Sr (3.7) 

The excess pressure tensor P and the heat current q are defined as 

P(r, t) = f dv mvvh(v, r, t) 

q(r, t) = f dv �89 r, t) 

(3.8) 

Substitution of successive terms from (3.5) into (3.8) and (3.6) yields 
successive approximations to the evolution operator matrix M in (3.1). 
Inclusion of terms up to order zero, one, and two gives the linearized 
Euler, Navier-Stokes, and Burnett equations, respectively. 3 The explicit 
forms are given in the Appendix. 

In order to inspect the Onsager symmetry of the equations so 
obtained, we recast (3,1) into the form 

8 
Ot c(r, t) = k. neq(r ) f(r, t) (3.9) 

The thermodynamic forces f(r, t) are the functional derivatives with respect 
to the c(r, t) of the second-order entropy functional obtained by sub- 
stituting (3.4) into SE23[P] defined by (2.10). Since the G(r, t) with i > 4  
that result from expanding h(v, r, t) in (3.4) in terms of the ~bk(v) are linear 
functionals of the c(r, t), this results in a bilinear functional in the c; after 
some integrations by parts this functional can be written as 

1 
S E23[c3 = - ~ k ~  dr nUql(r) c ( r ) - G . c ( r )  

d 
(3.1o) 

from which the set of thermodynamic forces follow as 

f = k n ~  1G �9 c (3.11) 

Since the term h in (3.4) enters into the calculation of G as a power series 
in/~, one obtains a power series for G as well. In zeroth order the results 
(2.11) for i~<4 are recovered, but in order /z 2 there appears a correction 
term; its explicit form is given in the Appendix. (The resulting correction 

3 These designations differ somewhat from those found in the literature. The customary forms 
are obtained by substituting (3.2), performing an additional linearization in terms of the 
fields 6n(r, t), u(r, t), and 6T(r, t), and extracting evolution equations for these fields. 
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terms of f were overlooked in Ref. 5.) From the power series in # for M and 
G a series for the operator matrix k defined in (3.9) can be obtained. The 
Onsager-Casimir symmetry requirements for this operator matrix are, in 
full analogy with (2.16), 

5P~ ~ + = r/~q~ a~, cq/3 = 0,..., 4 (3.12) 

with 

% = r/4 = 1; q1,2.3 = - 1  (3.13) 

Using the explicit expressions from the Appendix, one obtains for L up 
to order # 

kL=kL~~ ~ 0 -[3 l~ 
-~-~D 0 

o o 

+ # ~/ (1/m/3)(�89 + d" ~1) n~q x 0 

m 0 (5/2/3 2 Pr) ~- Oneq I 

(3.14) 

where r/denotes the viscosity and Pr the Prandtl number (A.13). In view of 
the relations 

d/'/eq 1 = njqlD; ~+ = - D  (3.15) 

which follow directly from the definition (3.7) and (2.17), this operator 
clearly satisfies the symmetry requirement (3.12). 

The second-order correction is given by 

with 

where 

0 1~ 0 )  

k L ( 2 ) = ( ~ )  2 lb O lc 

0 la 0 

I a -- -2 (1  + zl) n~qlD~D �9 dnCql ; 

1 c = 1 1 - 1 2 - 1 3 - 1 4 ;  

Ib = la  + 

l~=l i  ~ +l~- +1; ~ --I~- 

/3l 1 = 2(1 + Z1) neq 1Dn~q 1- ~-d 

1312 = 2(Pr) - l (1  + z2) nyqlD "~Sn~q ~ 
o 

/313 = Z3F/eq 1 D "  IJ~n~q 1 

ill4 = ~(Pr)-2( l  + z4) n~qaDD �9 0n~q I 

(3.16) 

(3.17a) 

(3.17b) 
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Here we used the notation A for the traceless part of the tensor A and an 
overbar to denote the symmetric part of a tensor; the numbers zl,..., z4 are 
related in the Appendix to certain matrix elements of the collision operator 
~. From the definitions given there it follows that they vanish for Maxwell 
molecules and for the BGK model. 

The Onsager-Casimir symmetry requirements (3.12) would imply for 
the vector operators defined in (3.16) 

1~= -!~+; I~= - !  { (3.18) 

which is clearly not the case. Closer inspection shows that contributions 
involving z2 and z3 behave correctly, whereas those with zl and z4 exhibit 
maximal violation. From the definitions (A.18) of the zk one sees that zl 
and z4 depend only on the even and the odd components of h(v, r, t), 
respectively; hence, they also occur in the second-order contributions to G. 
In contrast, z2 and z3 depend on both even and odd components of h and 
do not occur in the second-order part of G. The salvaging procedure for 
the Onsager relations described in Refs. 7 and 8 involves a redefinition of 
the thermodynamic forces, and hence of G, in which components of 
P(v, r, t) with different parity are treated differently. Hence, we may expect 
the procedure to work in our case as well. As we show in the next section, 
this is indeed the case. 

Our calculations reported in this section have basically confirmed the 
observation by McLennan/5) We have shown in addition that the inclusion 
of an external potential and the retention of terms omitted after a 
linearization following the substitution (3.2) does not alter the order in ~ in 
which the violations of Onsager symmetry first occur. Finally, we have 
shown that the symmetry is not restored when one takes into account the 
correction terms to the thermodynamic forces neglected in Ref. 5, which are 
of the same order as the violations themselves. 

4. THE RESTORATION OF O N S A G E R - C A S I M I R  S Y M M E T R Y  

As in Refs. 7 and 8, we now show that the Onsager-Casimir symmetry 
can be restored by a modification of the definition of the thermodynamic 
forces. For the modified treatment the fundamental thermodynamic 
quantity is not SIP], but rather the associated Lagrangian-type quantity 

S[P]=~ k l dr l dv[P(v,r,t)+ P(-v,r,t)] 

• ln[P(v, r, t)/P~q(v, r)]  (4.1) 
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which, up to second order in the expansion coefficients ci(r, t), equals 

1 ~,~[2]I-P 1 =-~ k ~ ~,0~ i f dr [ci(r, / ) ] 2  neql(r) 
i 

(4.2) 

The reformulation of the mesoscopic Onsager relations can now be carried 
through in complete analogy with Section 4 of I. In the hydrodynamic 
stage the ci with i>  4 cease to be independent variables; ~[21 becomes a 
functional of the set of hydrodynamic fields c(r, t) and assumes the form 

1 
S[2][C3 = --~ k f dr neql(r) c(r). ~ .  c(r) (4.3) 

The explicit form of ~ is given in the Appendix. The modified thermo- 
dynamic forces ~(r, t) derived from SEZ1[c] are 

"~ = - 6 S [ c ] / 6 c  = kn~ql  ~ �9 c (4.4) 

The operator matrix L defined by the relation 

8 
Ot c = M .  c = k*L. (~. c =]._-neq~ (4.5) 

should then obey the Onsager-Casimir symmetry relations 

~o~ = ~ +  (4.6) 

These relations are indeed satisfied by the explicit expressions obtained 
in our calculations: from the results for M and G in the Appendix one 
obtains up to order #2 

kL=~-~ D 0 ~ le +~  0 L 0 

0 - / ~ - I D  0 0 -s 

2 / 0 --!, O )  

0 Id 0 

(4.7) 

where L and ~44 denote the corresponding parts of L (1) in (3.14), I a and ! b 

are defined in (3.17a), while ]c and Id are given by 

Ic = --!1+12+13--14; "~a = --li~ +!~  + i f - -14  ~ (4.8) 
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with ll,..., 4 defined in (3.17b). The requirements 

- - l  a = - - l ; ;  |c=lJ ( 4 . 9 )  

which follow from (4.6), are clearly fulfilled, as are the corresponding 
requirements for the first two terms in (4.7). Thus, at least up to order #2, 
the redefinition of the thermodynamic forces does indeed enable the 
Onsager-Casimir symmetry to survive the elimination of fast variables via 
the Chapman-Enskog algorithm. 

The classical Onsager relations imply uS) that eigenfunctions of the 
evolution operator M with different eigenvalues are orthogonal with 
respect to the weight n~qlG �9 U, where O is defined by 

U,v = 6,vrlv (4.10) 

The modified Onsager relations imply orthogonality with respect to 
-n~q 1(~, which differs from n~qlG. U in order #2. The former orthogonality 
property was used by Titulaer and Felderhof (m to prove the 
Lekkerkerker-Laidlaw relation. (5"13) This relation states that the number n,  
of complex eigenvalues of the linear evolution operator of a system with n + 
even and n odd variables obeys the inequality 

n,  <~2min(n+,n ) (4.11) 

Of course, this relation is not directly relevant to our system, which has an 
infinite number of variables. However, in a homogeneous system M can be 
reduced to a direct product of finite-dimensional matrices by a spatial 
Fourier transformation, and (4.11) becomes relevant. Inspection of the 
proof in Ref. 14 shows that it remains valid for the modified Onsager 
relations as long as the restrictions of ~ to the subspaces of odd and even 
variables remain positive- and negative-definite, respectively. The same 
conclusion emerges when one tries to adapt the original proof. (~3) This can 
be done by introducing the operator matrix 

Q= _k-ln~qm(_U. (~)u2 �9 M �9 ( - U .  (~ ) - 1/2 ..1/2tteq (4.12) 

that is the analog of the operator ~ introduced in Section4 of I. By 
construction, O is similar to M Substitution of M = k]_-~ = k~k �9 U. U. 
[cf. (4.5)] leads to 

. 1/2 1/2 Q=n~l/2(-U.~a)l/2.~_ U - ( - U . ( ~ )  neq (4.13) 

Using the relations [_=t.  + and ~ = ~+,  the lemma(I.4.19), and the fact 
that ~ and U commute [the latter is obvious in (4.2); the relation must 
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remain valid when the expressions for the q(r, t) with i > 4  from the 
Chapman-Enskog algorithm are inserted], one arrives at the relation 

f l+= U . 0 .  U (4.14) 

The existence of such a relation for a Q similar to M was the starting point 
for the proof in Ref. 13. The proof again obviously breaks down when 
- U .  ~ ceases to be positive-definite. 

5. C O N C L U D I N G  R E M A R K S  

In any discussion of Onsager-Casimir symmetry relations it is crucial 
to use a correct, consistent set of thermodynamic forces and fluxes. 
Consistency is guaranteed when the forces and fluxes are derived from a set 
of thermodynamic variables. (For open systems, an appropriate thermo- 
dynamic function, such as the Helmholtz or Gibbs free energy, should of 
course be used instead of the entropy.) One has considerable freedom in 
choosing the set of thermodynamic variables, but they should provide a 
complete and nonredundant specification of the state of the system at the 
chosen level of description. Thus, in particular, the number of forces or 
fluxes should always be equal to the number of independent variables in 
the system at that chosen level. 

Of course, any relation that is true because of Onsager symmetry at 
the mesoscopic level remains a valid relation at the hydrodynamic level. 
Thus, one may substitute the Chapman-Enskog results for the ci(r, t) with 
i > 4 into the expression (2.18) for the mesoscopic fluxes, and decompose 
the results with respect to the similarly obtained Chapman-Enskog values 
of the mesoscopic forces. The expansion coefficients so obtained should 
then obey Onsager symmetry. However, the decomposition discussed will 
not be unique, since all f~(r, t) can ultimately be derived from the 
hydrodynamic fields e(r, t) by differentiations and multiplications with 
derivatives of q~(r), and the operator 5t in (2.18) contains just these 
operations. A decomposition in terms of the mesoscopic forces does 
become unique, however, even in the hydroynamic stage, if one requires the 
coefficients to be functions (not operators) that depend on ,/~(r) via the 
equilibrium density, but do not contain derivatives of q~(r) as explicit fac- 
tors. This procedure would not recover the mesoscopic Onsager matrix for 
the full fluxes, but it is correct for the dissipative parts of the fluxes, as is 
clear from the expression (2.21). A formalism of this type is presented by 
Ku~6er ~11) in the course of a more general discussion of the incorporation 
of Burnett effects into irreversible thermodynamics. The fluxes defined in 
(K.19-22) 4 are, up to numerical factors and linear combinations of 

4The notation (K.x) refers to Eq. (x) in Ref. 11. 
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quantities with the same tensorial character, precisely the dissipative fluxes 
associated with the mesoscopic variables 

?i(r, t) = f dv P(v, r, t) ~ l~W(v) (5.1) 

with the ~pi defined in (K.12-15), as is readily seen using (2.21) and (K.11). 
The dissipative nature of the fluxes is also apparent from the fact that the 
Onsager matrix (K.23-27), unlike, e.g., our (3.14) and (3.16), couples only 
quantities with the same parity. 

Of course, for the analysis given in Ref. 11, which is restricted to 
stationary systems, it is essential to consider the dissipative fluxes, rather 
then the full fluxes, which vanish identically. The symmetry properties of 
the matrix in (K.23-27) indeed originate in Onsager relations, albeit 
mesoscopic ones, but they involve only a subset of all mesoscopic 
Onsager-Casimir relations; their validity requires microscopic reversibility 
for the scattering process only, rather then of the full Boltzmann dynamics. 

In our discussion of Onsager symmetry we have constructed the 
hydrodynamic evolution equations, as well as the entropy and its 
Lagrangian, from the mesoscopic description of the system. In practice, 
however, Onsager symmetry is often invoked to constrain one's freedom in 
choosing the coefficients in a phenomenological ansatz for the equations of 
motion. As is clear from our discussion in Section 3, such a procedure 
requires, in addition to the ansatz for the equations of motion, a 
phenomenological ansatz for the second-order entropy SE22[c] that 
includes contributions from higher gradients of the hydrodynamic fields 
(up to the order considered in the equations of motion). Similarly, the use 
of the modified Onsager-Casimir relations discussed in Section 4 requires 
an ansatz for the second-order entropy Lagrangian ~E21[c]. A comparison 
of the kinetically derived expressions in the Appendix shows that ~E22 con- 
tains the same terms as S E2?, but often with different signs. Such a relation 
should also hold for the analogous phenomenological expressions. The 
correct signs to use in ~E2~ are probably best determined by comparison 
with a kinetically derived expression; for some cases, such as bulk viscosity 
terms and their Burnett analogs, the kinetic equation to use will be the 
Enskog equation rather than the Boltzmann equation. 5 

Though the entropy Lagrangian has a less immediate physical inter- 
pretation than the entropy itself, it is, at least in principle, a measurable 
quantity: it determines the "slipped" initial conditions for the correlation 

5 A recent discussion of entropy functionals for the Enskog equation can be found in Ref. 18. 
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functions of the hydrodynamic fields. By applying the theory of Sections 5 
and 6 of Ref. 7, or by a comparison with Ref. 5, one can prove the relation 

( c ( r ,  0 --~ ~), c( r ' ,  O) ~r = ( - -  U" ~ ) -  1 (~(r -- r ' )  (5.2) 

where e denotes a time large on the mesoscopic scale, but small on the 
hydrodynamic scale; the average (..., ...)r, defined in (2.17), coincides with 
the thermal equilibrium average. More formally, one can write, following 
McLennan, (5) 

(c(r, 0 + ~), c(r', O))r = lira exp[ - Mt] .  (c(r, t), c(r', O) )r (5.3) 
t$o 

McLennan (5) also shows how the correlation function in (5.2) can be 
extracted, at least for homogeneous systems, from the high-frequency 
behavior of dynamic scattering functions. It is also clear from (5.2) that the 
appearance of a zero eigenvalue of - U �9 6, which signals the breakdown of 
some of the procedures described in Section 4, also signifies a breakdown of 
the separation between mesoscopic and hydrodynamic time scales. 

Throughout this paper we have assumed the validity of the 
hydrodynamic description everywhere in the system. This may be correct 
when the spatial confinement is effected by a potential qS(r) that is smooth 
on the scale of a mean free path. In view of the density dependence of the 
mean free path, this is a rather severe restriction for the regions where 
/~q~(r) is large. Nevertheless, this possibility was one of our reasons to 
include the potential terms in our treatment, in spite of the additional 
complications in the formulas. 

A more complicated situation arises when the system is confined by 
walls. Then, for many mesoscopic boundary conditions, kinetic boundary 
layers of a thickness of a few mean free paths occur. The structure of these 
boundary layers determines the boundary conditions that should be 
imposed on the solutions of the hydrodynamic equations. (6'19~ Since 
P(v, r, t) no longer has the Chapman-Enskog form inside the boundary 
layer, such layers also cause additional contributions to the mesoscopic 
entropy (and entropy Lagrangian) density, and singular boundary terms in 
their macroscopic analogues. One may expect that a study of the Onsager 
symmetry properties of these singular terms will lead to relations between 
the accommodation coefficients appearing in the boundary conditions for 
the hydrodynamic fields. A few further remarks on this topic, and more 
generally on the relevance of the Burnett equations for systems with kinetic 
boundary layers, can be found in the paper by Kug~er. c11) A more complete 
and specific discussion would clearly exceed the scope of the present paper. 
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A P P E N D I X  

In this Appendix we sketch the calculations leading to the expressions 
for the matrix operators k and ]_ in Sections 3 and 4. The calculations 
follow the familiar Chapman-Enskog procedure, but because of our choice 
of variables and our inclusion of contributions from an external potential, 
they cannot be found as such in the literature. Our starting point is the 
Boltzmann equation, written in the form 

L p[CE](v ' r, t) = (Y  + /~ -1~)  p[CE](v, r, t) 
c3t 

(A.1) 

where pEtE] is specified in (3.4) and (3.5) and the operators 5 p and N in 
(2.3). The p[CE] depends on t via the hydrodynamic fields c(r, t), which 
obey a set of coupled equations of the form 

0 c(r, t) M c #kM(k) .c (A.2) 
0t o 

One need not include a term of order/.t -1 in M, since the parts of p[CE] 
other than h(v, r, t) in (3.4) are annihilated by N. The structure of M is 
given in (3.6); the quantities P and q can be written as 

with 

P(r, t ) =  ~ #kP~k'(r, t); q(r, t )=  ~ r t) (A.3) 
k = l  k = l  

pr (Fp ,  hr q{k)= <fq, h~k~>~ (A.4) 

The scalar product in (A.4) is defined in (2.4). These expressions are 
equivalent to (3.8); the addition of the superscript ~ in Fp is immaterial, 
since h is orthogonal to �89162 . Similarly, the additional term in fq is 
immaterial because of the required orthogonality to v~bo. 

The lowest order contribution to M can be read off directly from (3.6): 

/ 0 - d  0 t t 
M(~ [ - ( 1 / m f l ) D  0 -- (2/3m) ~ ] \ 0 - (1/fl) D 0 

(A.6) 
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The determining equation for h I~) obtained via the customary Chapman-  
Enskog procedure (1236'17) reads 

~h(1) = ~ fl2fq. De 4 +/~l:p: Dc (A.7) 

Since the rhs of (A.7) is orthogonal to the null space of ~ ,  this equation 
can be solved. Since, moreover, ~ and hence ~ - 1  preserve the tensorial 
character of any function of v, the solution can be written as 

h(1)=n~t[ZflA(v2)v'Dc4+m[3B(v2)Vv:De] q~o(V) (A.8) 

where A(v 2) and B(v 2) are defined via the relations 

A(V 2) Vq~ 0 =/~neq~-  lfq, B(v 2) v~ = m-lneq~t-lFp (A.9) 

As is customary, we expand A and B in terms of the Sonine polynomials, 
defined in Ref. 166: 

A(1)2) = ~--~ a ~(r)~r ~3/2 (~m~ v2) ; n (v2)  = ~ t~ '~(r)~ ~5/2 (~m[ 3v2) (A.10) 
r= l  r~0 

(there is no term with ao, since h should be orthogonal to v~b0). For  
Maxwell molecules and for the BGK model the series in (A.10) consist of 
their lowest term only. (~7) By substituting (A.8) and (A.10) into (A.4) and 
using the properties of the Sonine polynomials, one obtains 

q(~)= 5 a~ 2 
- 3 m---~ r/~ql Oc4 =- - 3-k ~r/eql nc4 (m. 11 ) 

p(1)___2bo/3 Xn~ql ~ee-- -21/n~q I ~cc (A.12) 

where we introduced the heat conductivity 2 and viscosity q. With these 
one can form the dimensionless Prandtl number 

Pr = ~lcp/2 = ~krl/m2 (A.13) 

Insertion of (A.11)-(A.13) into (3.6) gives the first-order contribution to M: 

(0 0 0 ) 
M(1) = m~/neqt- 0 DD + D .  DI 0 (A.14) 

0 0 (5/3 pr) D .  D 

6 Due to the factor rteq introduced in (A.9), the a r and b r are independent of the equilibrium 
density (which in our case depends on position). In this respect our definition differs from 
the one used, e.g., in Ref. 16. 



Onsager-Casimir Symmetry of Burnett Equations 931 

For the second-order contribution to h we obtain the equation 

1 0 a l / 1  2 ~h(2)-~{neql[-2boD~165 I) - ~ )  D" Oc4 

___2/? 1 2 A l l y  - D c  4 -t-~flVV: (AD - B A ' ~ ' )  neq ~ Dc4 
3m 

2 
- nZql BV~v: ( DDco +-~ flD~c4) + [ -  2flB*"-~c " v 

+mfl (BD-f lB '~ ' ) .v (r  n~q I ~o (A.15) 

where ~ '  denotes 905, while A' and B' denote derivatives with respect to 
the argument of the Sonine polynomials of A and B. By construction, the 
rhs of (A.15) is orthogonal to the null space of N, hence h (2) can be 
obtained by applying N ~ to it. Fortunately, for the calculation of p(2) and 
q(2) one need not evaluate the resulting expression; instead, one exploits the 
Hermiticity of N-1 and uses the definitions (A.9) and (A.4). Inserting the 
expansions (A.10) and exploiting the recursion and orthogonality proper- 
ties of the Sonine polynomials, (2~ one obtains results that can be written in 
the form 

t/2 1 2 ~ ~ q(2) =__ m neql - (1 + z2) D " de -+- z3O ' ~3e 
t_-- 

5 3  (Pr)-2(l  + z4) gO" e I n~q 1 (A.16) 

pI2)=_m neql- + zl) 2DDc~ +s  fl~-~c4 

~ 2 flz3 ~--0c4] n~ql } (A.17) -~-[ 3@r (l -{- z2) ~c4 'I- ~ 

where we introduced the abbreviations 
1 ~ (b r )  2 (2r+5)!! 

Z1 ~- "i5 r= 1 I~boJ 2rr! 

l ~ br (2r + 5)!! 

=1 albo 2~r! 
(A.18) 

2 ~ arb~ (2r+5)!! 
Z3=--~r~ l= (bo) 2 Ur! 

2 X? ~ {'a~'~2 (2r+ 3)]! 
Z 4 

= i-5 ~ 2 \ a l /  2~r! 
/ ! 

822/50/5-6-6 
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For Maxwell molecules and for the BGK model all ar with r > 1 and all b, 
with r > 0 vanish; hence, all zk in (A.18) vanish as well. Thus, the results for 
these special cases can be obtained from our general expressions by 
substitutions 

zk = 0, Pr = 2/3 (Maxwell) 

zk = 0, Pr = 1 (BGK) 

Substitution of the results (A.16), (A.17) 
expression for M (2) that can be written as 

into (3.6) 

2(oo 0) 
M 2, 

m c 

0 md 0 

where Ib is given in (3.17a) and 

mc---~f12(ll-12-13); 

with I1 ..... 14 given by (3.17b). 

(A.19) 

(A.20) 

now yields an 

(A.21) 

G(~ 0 mill (A.23) 

0 0 z/~2 3 

Since h is a linear combination of ~bi with i >  4, there are no cross terms 
between h and the other parts of pECE3. The contributions from h can be 
written in the alternative form 

ASEZ3[h] = �89 r, t), h(v, r, t))r., (A.24) 

where the scalar product is defined in (2.5). The form (A.24) can be derived 
by expansion from (2.9) using (2.5) and (2.1). The lowest order con- 
tribution is of order ]2 2 and can be derived by substituting (A.8) for both 
functions h in (A.24). The angular part of the v integrations in the scalar 
product can be carried out immediately; the remaining integral over Ivh 
requires insertion of (A.10) and use of recursion relations and 
orthogonality properties of the Sonine polynomials/z~ The resulting 

In order to construct from M the associated Onsager operator matrix 
k, we need the entropy functional sr2~[c], which is constructed from 
Sr23[P] in (2.10) by substituting the Chapman-Enskog solution (3.4). To 
zeroth order the part h(v, r, t) does not contribute and the result is readily 
cast into the form (3.10), with 

rod= m/?(l] + ! / - - 1  + ) (A.22) 
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expression is then brought into the form (3.10) via an integration by parts. 
For the second-order contribution to G we thus obtain 2(00 0) 

o o o 

0 0 ~44 

(A.25) 

with 

G = -(rnfl)2(1 + z~) n~q~(2b--~- 5D0 + D" 81) neq ~ 

fr = -~m/~3(Pr)  -2( 1 + 24) n~q ID" ~?n~q 1 
(A.26) 

and zl and Z 4 defined in (A.18). 
To construct the matrix 6 occurring in the entropy Lagrangian (4.3), 

we must change the signs of all contributions to G that originate in even 
parts of p~CZ3. From (A.8) one sees that the A part of h (11 is odd, while the 
B part is even. From (A.26) and (A.18) one sees that fr originates "from 
the A part, while 13 originates from the B part. The expression for 6 is 
therefore 

o0t o 0) 
6 = 0 mill +~t 2 0 - G  0 + -.. (A.27) 

0 0 _ ~/~2 0 0 ~44 

The relation 6 + = 6, used in Section 4, is clear by inspection if one recalls 
(3.15). The expressions (3.14) and (3.16) for L, and (4.7) for L., follow from 
the definitions (3.9), (3.11), and (4.5) by substitution of the results obtained 
in this Appendix for M, G, and 6,  and inversion of the power series for G 
and 6. 
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